Quasi-permutation modules over finite groups, II

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Permutation Presentations of Modules over Finite Groups

We introduce a notion of permutation presentations of modules over finite groups, and completely determine finite groups over which every module has a permutation presentation. To get this result, we prove that every coflasque module over a cyclic p-group is permutation projective.

متن کامل

Rational permutation modules for finite groups

By the Artin Induction theorem,C(G) is a finite abelian group with exponent dividing the order of G. Some work on this sequence has already been done. In [14] and [16], Ritter and Segal proved that C(G) = 0 for G a finite p–group. Serre [17, p. 104] remarked that C(G) / = 0 for G = Z/3 × Q8 (the direct product of a cyclic group of order 3 and a quaternion group of order 8). Berz [2] gave a nice...

متن کامل

Projective Modules over Finite Groups

Serre [5] has recently proved a general theorem about projective modules over commutative rings. This theorem has the following consequence : If 7T is a finite abelian group, any finitely generated projective module over the integral group ring Zir is the direct sum of a free module and an ideal of Zir. The question naturally arises as to whether this result holds for nonabelian groups x. Serre...

متن کامل

QUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...

متن کامل

Rank 3 Permutation Modules of the Finite Classical Groups

The cross-characteristic permutation modules for the actions of the finite classical groups on singular 1-spaces of their natural modules are studied. The composition factors and submodule lattices are determined.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Mathematical Society of Japan

سال: 1974

ISSN: 0025-5645

DOI: 10.2969/jmsj/02640698